
Paper category: Genetic programming (submitted to

A Genome Compiler for High Performance Genetic Programming
GP-98)

Alex Fukunaga and Darren Mutz

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr., M/S 525-3660
Pasadena, CA 91109-8099

alex.fukunaga@jpl.nasa.gov, darren.mutz@jpl.nasa.gov
(626)306-6157

Abstract
Genetic Programming is very computationally expensive.
For most applications, the vast majority of time is spent
evaluating candidate solutions, so it is desirable to make
individual evaluation as efficient as possible. We describe
a genome compiler which compiles s-expressions to ma-
chine code, resulting in significant speedup of individual
evaluations over standard GP systems. Based on perfor-
mance results with symbolic regression, we show that the
execution of the genome compiler system is comparable to
the fastest alternative GP systems. We also demonstrate
the utility of compilation on a real-world problem, loss-
less image compression. A somewhat surprising result is
that in our test domains, the overhead of compilation is
negligible.

1 Introduction
Genetic programming (GP) is an approach to automatic
programming in which computer programs are evolved us-
ing a process inspired by natural selection [4]. Briefly, the
G P approach works as follows: given an optimization ob-
jective function, a population of individuals, i.e., candi-
date solution programs (typically represented by Lisp s-
expressions) are generated. In a process analogous to bio-
logical evolution, this population is evolved by repeatedly
selecting (based on relative optimality) members of the
population for reproduction, and recombining/mutating
to generate a new population (Figure 1).

Genetic programming is a very computationally inten-
sive task. It is well-known t8hat in many applications to
which genetic programming is applied, the vast majority

of computational resources is used by the evaluate step,
which evaluates candidate solutions with respect to an
objective function. Thus, one of the challenges in imple-
menting a high-performance G P system is speeding up the
evaluation step as much as possible.

We were made acutely aware of the need for an efficient
individual evaluation process when we attempted to apply
GP to image compression (see Section 4.2). Initially, we
implemented the application using lil-gp [lo], a standard
G P system used by numerous researchers, and found that
it was prohibitively slow to study genetic programming-
based image compression - each run took about 2 days
on a 296MHz Sun UltraSparc 2. We therefore sought to
significantly improve the speed of execution of the GP
system.

In standard GP, s-expressions are recursively evaluated,
and each evaluation of an atom requires a recursive func-
tion call. This means that even though many atoms in the
set of primitives can be evalua.ted by a single machine in-
struction (e.g., add, multiply, independent variables, etc.) ,
much time is spent in unnecessary function call overhead
such as pushing/popping values onto the stack. This prob-
lem is not unique to lil-gp: Keith and Martin [3] observed
that function call overhead can overwhelm the time actu-
ally required to evaluate nodes, even with a very efficient,
linear (non-recursive) s-expression representation.

We therefore sought to eliminate as much of this func-
tion call overhead as possible, and implemented a genome
compiler' which compiles s-expressions into SPARC ma-
chine language instructions. In applications where the
same tree is evaluated many times (e.g., symbolic regres-

'As far as we know, this term was coined by Keith and Martin
in [3] .

mailto:alex.fukunaga@jpl.nasa.gov
mailto:darren.mutz@jpl.nasa.gov

1

t := 0
initialize P (t) ;
evaluate P (t) ;
while not terminate do

P’(t) := recombine P (t) ;
P”(t) := mutate P’(t);
evaluate P (t) ;
P (t + 1) := select (P”(t) U Q) ;
t := t + 1;

end while

Figure 1: Algorithm schema for Genetic Programming. P is a
population of candidate solutions; Q is a special set of individuals
that has to be considered for selection, e.g., Q = P (t) .

sion, image compression), the benefits of eliminating func-
tion call overheads outweighs the overhead of compilation.

The rest of the paper is organized as follows: In Section
2 , we review related work on high-performance evaluation
mechanisms for genetic programming. Section 3 describes
our genome compiler in detail. Section 4 presents some
empirical evaluations of genome compiler based genetic
programming, comparing its performance with standard
lil-gp and other proposed methods for high-performance
G P implementations. We conclude in Section 5 with a
discussion of results and directions for future work.

2 Related Work
A number of researchers have addressed the problem of
highly efficient implementations of genetic programming.

Keith and Martin [3] observed that the recursive evalu-
ation of the standard tree representation of s-expressions
and used in G P systems widely used by the G P research
community such as SGPC [la] lil-gp [lo] was inefficient
because much time is used parsing the type token for
each node in the tree. They showed that a linear, stack-
based internal representation of s-expressions resulted in
significant speed improvement over a tree representation.
However, they observed that even with the efficient linear
representation, function calls still posed a significant over-
head, and suggested that the implementation of a genome
compiler would be an interesting direction for future re-
search.

Perlcis [9] first demonstrated the use of genetic operators
(crossover and mutation) on a linear individual represen-
tation using a stack-based virtual machine (as opposed
to the standard s-expression representation).’ The idea

21n contrast, Keith and Martin used a linear representation as a
representation of s-expressions, and their genetic operators worked
at the level of s-expressions, not directly on the linear representation

of directly evolving stack-based linear programs was also
used in HiGP, a high performance, parallel G P system
developed by Stoffel and Spector [ll], which, like Perkis’
system, works directly on a population of linear programs
for a virtual stack machine.

An interesting contrast between s-expression based ap-
proaches and stack-based approaches is in the enforcement
of closure property (i.e., that guarantees all programs gen-
erated are valid and executa.ble by the interpreter). In
stack-based approaches, it is possible that a virtual ma-
chine instruction which takes arguments off the stack will
not have enough values available on the stack. In this case,
both of the above systems maintain closure by ignore the
instruction (i.e., they treat it as a NOOP). In s-expression
based genetic programming, the genetic operators assure
that the arity of all functions is correct. This was cited as
an advantage of using Lisp s-expressions as the program
representation by Koza [4]. Given the good performance
behavior reported for stack-based G P [9, 111 in compara-
tive experiments with standard s-expression based GP, it
is now unclear whether there is any advantage to the ease
of maintaining the closure property that the s-expression
based approaches offer.

While the previous stack-based approaches used a linear
representation internally, Juille and Pollack implemented
a system which applies genetic operators to s-expressions,
but previous to execution, compiles them into a linear
representation for execution on a stack-based virtual ma-
chine [a]. Note that in this scheme, there is no problem
of handling possible stack underflow during execution, be-
cause the linear programs are directly translated from s-
expressions that guarantee that the arity of the functions
is correct.

Nordin developed the Compiling Genetic Programming
System (CGPS) [7, 81, which manipulates linear arrays
of SPARC machine language instructions. Crossover and
mutation are applied at the instruction boundaries, to en-
sure that the machine code resulting from the operations
are valid. Note that despite its name, the Compiling Ge-
netic Programming System does not apply a compilation
procedure to its individuals at any time ~ CGPS is unique
in that it directly manipulates machine-specific code, as
opposed to the other approaches, which apply genetic op-
erators to s-expressions or linear code for a virtual stack
machine.

The genome compiler described below combines 1) the
idea in Juille and Pollack’s work of applying genetic oper-
ators to s-expresssions, but compiling s-expressions into a
representation that can be executed more efficiently, and
2) the machine code representation used by Nordin, which,
after compilation, results in the fastest3 possible execution

(e.g., “tree crossovers” were simulated on the linear representation).
31n this paper, when we say f a s t , we refer to execution speed

(as opposed to a virtual machine).

3 The Genome Compiler
The motivation for examining the possibility of convert-
ing a LISP s-expression into a form that is more efficient
to evaluate comes primarily from the observation that the
standard method of recursive evaluation involves much
more computational effort than simply applying arith-
metic operators in sequence. That is, since simple arith-
metic operations can be executed with a single instruction
at the hardware level, our intuition tells us that the arith-
metic portion of the computation is probably dwarfed by
the overhead associated with pushing and popping argu-
ments and return values on the program’s stack during re-
cursive s-expression evaluation. This observation led us to
conclude that translating the s-expressions evolved by the
GP into a more terse machine 1a.ngua.ge equivalent would
greatly improve performance. Before ea.ch individual s-
expression is evaluated, the genome compiler compiles it
(at runtime) to SPARC machine language [13] code as
described below.

The method of generating machine executable code pro-
ceeds naturally from the standard recursive evaluation
procedure. The post order traversal of the graph cor-
responding to the given s-expression is analogous to the
order of operations one would perform if the computa-
tion were carried out in postfix form with a stack. That
is, traversing the tree representation in Figure 2 in post
order gives us the stack-executable code in Figure 3.

Ll

p u s h (x)
p u s h (x)
t l = POP0
t 2 = POP0
p u s h (t 2 * t l)
p u s h (x)
p u s h (x)
t l = POP0
t 2 = POP0

t l = POP0
t 2 = POP0
p u s h (t 2 + t l)

p u s h (t 2 - t l)

Figure 3: Stack machine code that computes the value of
the s-expression in Figure 2.

Translating this stack-executable code to machine code,
where values are pushed and popped from locations in
memory, is a clear speed improvement over recursive
tree evaluation, which involves maintaining the program’s
stack in addition to these operations.

An additional speed improvement is realized when one
considers the register file itself a stack, albeit one of lim-
ited depth. In addition to a reduction in data access times
we also gain the ability to effectively pop two operands,
perform an arithmetic operation and push the result, all
in a single machine instruction4. This is due to the fact
that in many modern architectures arithmetic instructions
allow both source registers and a destination register to
be specified.

Representing floating point registers as f o , f l , . . . , f 3 1 ,

with the constant value x stored in f31, Figure 4 gives
the assembly-level code corresponding to the s-expression
above. Three breaks in the generated assembly are la-
beled (1, 2 , and 3); the breaks correspond to the code
generated so far when the traversal has progressed to the
node indicated in the tree diagram.

Our compiler directly generates the machine executable
code that corresponds to this assembly-level code. A key
point to note is that the C programming language pro-

Figure 2: An example individual. vides the necessary flexibility here: it allows the program-
mer to create jumps to code that is generated at runtime
by casting an integer array to a function pointer [8]. This

4Note that not all function primitives in the individuals generated
for evaluating individuals, and not to the efficiency of GP search by the GP can be executed in a single instruction. For example,
algorithms. protected division requires a test for a denominator of zero.

are a , b , c, and d it returns c if a 2 b and d otherwise.

..mov fE.3.1.L f.P.0.

.
..sub f& fp? ! .!.E?
add fpO, f p l , fpO

[qgte] [qgteJ

mov
rnov
sub

bge
cmp

mov
nop

mov
add
ba
nap
mov

fp31, fpO ! fpO <- x
f p 3 0 , f p l ! f p l <- 5
f p 0 , f p l , fpO ! fp0 <- x - 5
fpO. fp29 ! compare 0 , x-5
7 ! branch on > =

fp31, fpO
f p 3 1 . f p l

! fp0 < - x

fpO, f p l , f p 0 ! fpO < - x - 5
! f p l < - 5

3 ! branch always

fp31. fpO I fp0 c - x

Figure 4: The s-expression from Figure 2 with correspond-
ing assembly-level code. Numbered breaks in the code
correspond to the code generated so far when the post or-
der traversal has progressed to the node indicated in the Figure 5: individual with a conditional and its assem-
tree diagram. bly equivalent.

eliminates the the overhead of invoking an external com-
piler.

The computational complexity of compiling each s-
expression down to machine executable code is linear in
the number of nodes in the tree corresponding to the s-
expression, the same as that of recursive tree evaluation.
Both procedures involve visiting each node in the tree ex-
actly once and executing a constant number of operations
a.t each node.

It was previously noted that some function primitives
in s-expressions generated by the GP cannot be executed
in a single machine instruction. This is particularly true
of conditionals, as Figure 5 illustrates. For the purposes
of this example, floating point register f31 contains the
independent variable x , as before, and f 2 ~ and f3O con-
tain the constants 0 and 5, respectively. The arity four
primitive i f g t e is defined such that if its four arguments

The genome compiler approach is similar to [8] only in
that both methods involve runtime machine code gener-
ation and execution; in our approach individuals are not
manipulated at the machine code level. Like our compiler,
The HiGP system described in [ll] takes the approach of
converting s-expressions into stack machine instructions,
incorporating an extremely space efficient memory repre-
sentation of individuals as well. However, HiGP performs
evolution at this level, using a string-based genetic algo-
rithms approach. Our system acts instead as a means
of speeding up the execution of standard tree-based G P
systems. Our method is perhaps most similar to [a] in
that population members are "pre-compiled" down to a
stack-executable form; the genome compiler takes that ap-
proach one step further and compiles the stack-executable
instructions down to the machine code level.

4 Empirical Evaluation
We evaluated the performance improvements obtained us-
ing the genome compiler on two tasks, symbolic regression
and lossless image compression. In both tasks, each can-
didate s-expression is evaluated many times, which poten-
tially justifies the overhead of compilation.

Since the genetic operators are applied to s-expressions,
one might expect that given the same random seed, the
evolutionary dynamics of the compiler system expected to
be exactly identical that of standard s-expression based
GP (i.e., that over the course of the run, the exact same
s-expressions would be generated and evaluated by both
systems). However, due to the sensitivity of floating point
computation to the exact ordering of computations - par-
ticularly when small numbers are being manipulated - it is
possible for the dynamics of the compiler based and stan-
dard systems to diverge, even when the initial populations
and random seeds are identical, a.nd we found that such
divergence occurs quite frequently in our runs. Thus, in
our experiments, we compare the results of multiple runs
of the compiler and standard systems using many random
seeds.

Figure 6: Time to complete 30 generations of GP on symbolic
regression of f t a r g e t = 2' for the Genome Compiler, lil-gp, and
SGPC systems. Mean and standard deviation of 100 runs. All
timings in this figure were measured on a 296 MHz UltraSparc 2.

..

25 -

4.1 Symbolic Regression
Symbolic regression is a canonical genetic program prob-
lem in which the task is to generate a program which ap-
proximates target function f t a r g e t . The objective function
to minimize is:

for numcases randomly generated fitness cases (test
points), where fgp is a candidate GP solution.

Here, we use symbolic regression to study the relative
speed of the genome compiler compared with lil-gp, as
well as other GP systems.

We used the test function f t o r g e t (x) = zg. The genome
compiler and standard lil-gp systems were configured as
follows: population=500, generations=30, function set =
{+, -, *, %} (where % is the protected division operator
[4]), terminal set=X, tournament selection (size=5), 90%
crossover, 10% reproduction, no mutation, depth limit 5).

To observe the speed benefit of compilation as the rel-
ative overhead of compilation was varied, we varied the
number of fitness cases between 1 and 1000. Figure 6
shows the runtimes (cpu time) of lil-gp and the genome
compiler, averaged over 100 independent runs; Figure 7
gives a detail of the region where the number of fitness
cases varies between 1 and 20.

As shown in Figure 6, the speedup of the genome com-
piler, t l i l -yp/ tgeno,~,e_conzpi le l . , improves as the number of

Figure 7: Performance on small numbers of regression test cases
(a zoomed view of Figure 6):Time to complete 30 generations of G P
on symbolic regression of f t a r g e t = 2' for the Genome Compiler, lil-
gp, and SGPC systems. Mean and standard deviation of 100 runs.
All timings in this figure were measured on a 296 MHz UltraSparc
2.

test cases is increased (i.e., the relative overhead of com-
pilation is decreased), reaching a maximum speedup of
a.round 50 times when the number of test cases is 1000.

A somewhat surprising result is that even when only a
single test case was used for symbolic regression, the per-
formance of the genome compiler is no worse than that of
lil-gp. This is because even with one test case, both stan-
dard lil-gp and the genome compiler need to traverse the
tree at least once (lil-gp traverses the tree once to evalu-
ate it, the genome compiler traverses the tree once during
compilation), and the overhead of this single traversal is
quite signifi~ant.~ In comparison, the computational cost

'The small standard deviation for the runtimes of the genome
compiler system suggests that the compilation overhead is roughly

L

of actually executing the compact machine code transla-
tion is almost negligible - note in Figure 7 that the run-
time for the genome compiler G P barely increases as the
number of test cases is increased from 1 to 20. In other
words, compilation overhead is negligible in the genome
compiler, at least for the set of primitives used in our ex-
periments.

4.1.1 Comparison with other high performance
GP systems

To put the speedup enabled by genome compilation in per-
spective, we also briefly compare our symbolic results with
other published results for high-performance GP systems.

Stoffel and Spector compared the speed of HiGP
against lil-gp on symbolic regression of the target func-
tion x9, where the configuration of lil-gp they used
was: population=500, maxgenerations=30, function set
= {+, - , *, %} , terminal set=X, tournament selection
(size=5), 90% crossover, 10% reproduction, no muta-
tion). They compared the average time per generation of
the two systems, and found that the maximum speedup
(t l i ~ - ~ ~ / t ~ i ~ p) measured was approximately 5, when the
depth limit for lil-gp was set to 17 [ll]. The genome
compiler, due to its use of machine code, achieves about
an order of magnitude speedup over HiGP.

Because of the use of machine language instructions, the
CGPS system of Nordin and Banzhaf [8] is expected to be
closest to our genome compiler with respect to genome
evaluation speed. Nordin reported that on a polynomial
symbolic regression task, CGPS ran on average 60 times
faster on symbolic regression than SGPC, a standard re-
cursive tree evaluator based G P system written by Taclcett
and Carmi [12], where both CGPS and SGPC was running
on a SPARC IPX. Although we were not able to directly
compare the genome compiler with CGPS, we can per-
form an indirect comparison by comparing the genome
compiler with measurements of SGPC speed on a 296
MHz SPARC Ultra 2 , using the same symbolic regression
problem (f taryet = x g) and the same control parameters
(Figure 6) . The genome compiler performs roughly 50-60
times faster than SGPC running on the same machine,
which is comparable to the execution speeds for CGPS
reportred by Nordin and Banzha.f [8].

constant(forour set of primitives and depth limit of 5) - in contrast,
the speed of standard lil-gp runs varies significantly depending on
the mix of tree sizes which are generated during the run.

6Note that Stoffel and Spector stopped the lil-gp runs when the
optimal solution was found, while in our experiments, the GP was
run a full 30 generations.

Figure 8: Algorithm schema for predictive coding. M o d e l (z , y)
is a function that takes the coordinates of a pixel and returns a
predicted value of that pixel. I m a g e and Error are two-dimensional
arrays.

4.2 Lossless Image Compression

The impetus for the development of the genome compiler
was the need to perform efficient s-expression execution
for the task of lossless image compression using a nonlinear
predictive coding algorithm for which the nonlinear model
was automatically generated using a genetic programming
system. We briefly describe the application below. Our
compression results will be presented in a forthcoming pa-
per. See [5, 61 for more details on predictive coding based
image compression.

Predictive coding is an image compression technique
which uses a compact model of an image to predict pixel
values of an image based on the values of neighboring pix-
els. A model of an image is a function mode l (x , y) , which
computes (predicts) the pixel value at coordinate (x , y) of
an image, given the values of some neighbors of pixel (x , y) ,
where neighbors are pixels whose values are known. We
process the image in raster scan order, and use the set of
neighboring pixels {(x-i,y-i), (x,y-l), (x+l,y-l),(x-i,y)}.
Linear predictive coding is a simple, special case of predic-
tive coding in which the model simply takes a weighted
average of the neighboring values. Nonlinear models as-
sign arbitrarily complex functions to the models. Apply-
ing a model to an image results in an error signal (the
differences at each pixel between the value predicted by
the model and the actual value of the pixel in the original
image. To complete the compression process, the error
signal is compressed using a standard data compression
technique such as Huffman coding.

If we transmit this compressed error signal as well as the
model, then a receiver can reconstruct the original image
by applying an analogous decoding procedure (see Figure

Given an input image, our system uses GP to generate
a nonlinear model for the predictive coding.

The terminals and functions used were:

8).

Encoder(Mode1,Image)
for x = 0 to xmax

for y = 0 to y m u x
Error[x,y] = Image[x,y] - Model(x,y)

Decoder(Mode1)
for x = 0 to x m a x

for y = 0 to y m u x
Image[x,y] = Model(x,y) + Error[x,y]

I

values of the four neighboring pixels Image[x-i ,y-i],
Image[x, y-i], Image[x+i,y-i], Image[x-i ,y].

0 selected constant values: 1, 5, 10, 100.

0 arithmetic functions si- , *, % (protected division [4])
the conditional operator (IFLTE argi arg2 reti ret2)
which returns the value of ret1 if argl 5 arg2, and
the value of ret2 otherwise.

(MIN a 6) and (MAX a b) functions which return
the minimum and maximum values of their two ar-
guments, respectively.

Since the model is applied to ea.ch pixel in the image
this application would be expected t80 benefit from com-
pilation.

We ran 5 runs each of 50 generations of both the genome
compiler and lil-gp on a 64 pixel by 64 pixel image com-
pression problem. On a 296MHz UltraSparc 2 , the aver-
age runtime for lil-gp was 9177 seconds, and the average
runtime for the genome compiler was 2071 seconds.

Note that a significant percentage of the current run-
time (about 50% for the 64 by 64 images in the experi-
ments) is spent by the adaptive Huffman coder which is
run for each individual evaluation, and not in the exe-
cution of compiled machine code for individuals; this ex-
plains why the speedup obtained (4-5 times) is not as
impressive as that for symbolic regression.

Although the current runtime (several hours per image
using the genome compiler) is still too slow for practical
application of the technique, the significant speedup en-
abled by compilation makes it much more feasible to ex-
plore alternative search strategies, function/terminal sets,
etc. for this problem (i.e., runs that would take roughly
a week using standard GP can be now be completed in
about a day).

5 Conclusion/Discussion and Fu-
ture Work

We have described an implemented genome compiler for
speeding up individual evaluations in GP. Experiments
with symbolic regression and image compression appli-
cations show that for applications in which individuals
are repeatedly evaluated, the genome compiler provides a
significant speedup over standard s-expression based G P
systems as well as virtual stack machine based systems;
the speedup over conventional G P systems written in C is
comparable to CGPS, the fastest reported GP implemen-
tation in the literature. On extremely computationally

7The compression ratios obtained by this system are promising,
but are beyond the scope of the present paper.

expensive problems such as image compression, the speed
improvement that the genome compiler offers makes the
application of s-expression based GP to the problem much
more feasible. Furthermore, we showed that the 0verhea.d
of compilation can be negligible, so that the speed benefits
of compilation can be significant even when the number
of times individuals are repeatedly evaluated is small.8

Obviously, raw execution speed is not the only impor-
tant factor in evaluating a G P system. The relative merits
of s-expression based G P vs. alternatives such as stack-
based GP and CGPS is still an open research problem
~ with respect to search effort, s-expression based GP
seems to do better on some problems, while stack-based
a.pproaches do better on others (c.f., [9, 13). Likewise, the
dynamics of CGPS in comparison to traditional GP and
stack-based G P are not fully understood yet. Previous
work had shown that alternative approaches such as stack-
based G P and CGPS are capable of significantly faster ex-
ecution of s-expressions than traditional s-expression GP.
Our work shows that by using a compiler to remove func-
tion call overhead, s-expression based G P can be compet-
itive with the fastest alternative approaches with respect
to execution speed.

A disadvantage of the genome compiler approach is that
the implementation is machine specific. In comparison,
G P systems such as HiGP which use virtual stack-based
machines are machine independent, while being signifi-
cantly faster than traditional s-expression based G P sys-
tems. A genome compiler that compiles to a virtual ma-
chine code (like that of Juille and Pollack) could possi-
bly yield execution speeds comparable to virtual stack-
machine GP.

Finally, another interesting direction in which to extend
would be to implement compiler optimizations which use
editing operations [4] or standard compiler optimization
techniques to collapse instructions together, removes re-
dundant operations, reorder operations, etc., to further
speed up execution. Although this would add additional
compilation overhead, the benefits may be worthwhile for
applications such as image compression in which the indi-
vidual is evaluated many of times.

Acknowledgments
The research described in this paper was performed by the
Jet Propulsion Laboratory, California Institute of Tech-
nology, under contract with the National Aeronautics and
Space Administration. Andre Stechert suggested the im-
plementation of the genome compiler, and provided valu-
able technical assistance. Thanks to Bill Punch and Dou-

'Figure 7 shows that significant speed benefits can be obtained
for symbolic regression even when only 5-10 test cases are used.

glas Zonker for making lil-gp publically available, and to
Walter Taclcett and Aviram Carmi for making SGPC pub-
lically available.

References
[I] W.S. Bruce. The lawnmower problem revisited: Stack-

based genetic programming and automatically defined
functions. In Proceedings of the Annual Genetic Program-
minc-Conference, pages 52-57, 1997.

[2] H. Juille and J.B. Pollack. Massively parallel genetic pro-
gramming. In P. Angeline and K. Kinnear, editors, Acl-
vances in Genetic Programming-2. MIT Press, 1996.

[3] M.J. Keith and M.C. Martin. Genetic programming in
c++: Implementation issues. In K. Kinnear, editor, Ad-
vances in Genetic Programming. MIT Press, 1994.

[4] J. Koza. Genetic Programming: On the Programming of
Computers b y Means of Natural Selection. MIT Press,
1992.

[5] N. Memon and X. Wu. Lossless compression. In CRC
Handbook of Communication. 1996 (to appear).

[6] N. Memon and X. Wu. Recent progress in lossless image
coding. The Computer Journal, to appear, 1997.

[7] P. Nordin. A compiling genetic programming system that
directly manipulates the machine-code. In K. Kinnear, ed-
itor, Advances in Genetic ProgrammingLMIT Press, 1994.

[8] P. Nordin and W. Banzhaf. Evolving turing-complete pro-
grams for a register machine with self-modifying code. In
Proceedings of the International Conference on Genetic
Alg~orithms. Morgan Kaufmann, 1995.

[9] T . Perkis. Stack-based genetic programming. In Proc.
IEEE International Conference on Evolutionary Compu-
tation, 1994.

[IO] B. Punch and D. Zonker. lil-gp genetic programming sys-
tem version 1.1 beta version. Michigan State University,
http://GARAGe.cps.msu.edu/software/lil-
gp/index.html, 1996.

[11] E<. Stoffel and L. Spector. High-performance, paralle,
stack-based genetic programming. In Proceedincs of the
Annual Genetic ProgIamming-Conference, pages 224-229.
MIT Press, 1996.

[I21 W. Tackett and A. Carmi. sgpc: simple genetic program-
ming in c. ftp://ftp.io.com/pub/genetic-programming,
1993.

[I31 D. Weaver and T. Germond. The SPARC Architecture
Manual, Version 9. P T R Prentice Hall, 1994.

http://GARAGe.cps.msu.edu/software/lil
ftp://ftp.io.com/pub/genetic-programming

